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LETTER TO THE EDITOR 

Intermittency as multifractality in history space 

G Paladin, L Peliti and A Vulpiani 
Universita di Roma 'La Sapienza', Dipartimento di Fisica and GNSM-CNR, unita di 
Roma, Piazzale AIdo Mor0 2, 1-00185 Roma, Italy 

Received 14 July 1986 

Abstract. Temporal intermittency in a chaotic dynamical system can be regarded as a 
manifestation of the multifractal properties of the set of histories. The Renyi entropies K, 
which generalise the Kolmogorov entropy K ,  play a role analogous to the exponents 7 ( q )  
characterising the scaling properties of the moments of the mass distribution. We introduce 
the topological entropy h ( A )  of the subset of histories with the same local expansion 
parameter. We show that K, and h ( A )  are related to each other by means of a Legendre 
transformation. 

In the characterisation of the attractor in dynamical systems a hierarchy of exponents 
T ( q )  has been introduced, describing the scaling behaviour of the moments of its mass 
density with respect to phase space dilations (Grassberger 1983, Badii and Politi 1984, 
Paladin and Vulpiani 1984). 

The structure of the attractor can be described as an interwoven family of sin- 
gularities of type a, where a is defined by the behaviour p ( l ) a  I" of the probability 
of finding a point of the attractor within a distance 1 of a singularity of type a. These 
singularities are distributed over a set of fractal dimension f ( a ) .  The exponents T ( q )  

and the dimensions f( a) are related to each other by means of a Legendre transforma- 
tion (Frisch and Parisi 1983, Benzi et a1 1984, Jensen et a1 1985, Halsey et a1 1986). 

In this description all information about the temporal evolution of a given point 
in phase space is lost, although the probability p (  I )  is sometimes estimated by computing 
the first return time T ( I )  within a distance I of a given point, and by setting p(Z)  - 

We wish to point out that further information can be retrieved by considering the 
dilation of an element of phase space under time translations. The natural setting of 
this analysis is the set of all histories. 

The role corresponding to the exponents T ( q )  is played by the Renyi entropies K, 
(Renyi 1970), themselves a generalisation of the Kolmogorov entropy K1. We introduce 
a parameter A characterising the local divergence of a volume in the tangent space, 
and the topological entropy S(A) of trajectories with a given value of A. The Renyi 
entropies K, and the topological entropy S(A) are then related to each other by a 
Legendre transformation analogous to that relating T ( q )  and f ( a )  to each other. 

We now briefly recall the concepts allowing for a description of strange attractors 
as multifractal objects in phase space (Frisch and Parisi 1983, Benzi et a1 1984, Jensen 
et a1 1985, Halsey et a1 1986). Let dp (x )  be the normalised invariant measure on the 
strange attractor. Let xo be a point of the attractor. We say that x,, is characterised by 

(no)-'. 
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a singularity of type a if the probability p(I) of finding a point of the attractor in a 
ball of radius 1 around xo scales like 1" when 1 + 0: 

d p  (x) - I". I Ir-xol<l 
PdXO) = 

The type of the singularity will in general depend on the point one is looking at. A 
way of describing the distribution of singularities is to divide the portion of phase 
space occupied by the attractor into boxes of linear size 1, and to compute for each 
box i the probability pi(/) that a point (sampled according to the invariant measure 
dp(x) )  belongs to the ith box. We can then compute the moments y(q,Z) of the 
distribution of the p r (  i): 

y(q,  I) = C p I (  i ) q  - Pq) .  
boxes 

i 

If the attractor were a homogeneous fractal of fractal dimension D one would have 

4 q )  = D(q  - 1). (3) 

In general, however, the exponents T ( q )  deviate from the linear law (3). We say in 
this case that the attractor is a multifractal and we consider a whole family of dimensions 
Dq (the Renyi dimensions) defined by 

T ( q )  = D,(q - 1) .  (4) 

The space average appearing in (2) can be estimated by means of an average taken 
over the singularity distribution. Let us collect the points x with a singularity belonging 
to the interval [ a ,  a + d a ]  into a subset n(a). The fractal dimension of n(a) is f ( a )  
in the sense that if the phase space is partitioned into boxes of linear size 1, the number 
of boxes necessary to cover a( a )  increases, as 1 + 0, as 

,Ir, 5 ( 5 )  

The coefficient of this proportionality law can be assumed to be a smoothly varying 
measure dv(a) .  By grouping together boxes dominated by the same singularity a, we 
then have 

By a saddle-point estimate of this integral we have in the limit 1 + 0 

T ( q )  =min[aq U - f ( a ) ] .  (7 )  

The fractal dimension Do is given by Do= - T ( O )  whereas the dimension D, = 
limq+l T ( q ) / ( q  - 1)  is the information dimension. At q = O  one picks up the most 
probable singularity a * where f( a) attains its maximum value, f( a *) = Do, while at 
q = 1 the average value of a given by the information dimension D, g Do where 

Let us now show that the analysis of the local structure of the set of histories of a 
dynamical system can be carried out in close analogy with the formalism described 
above. Let us consider a dynamical system with F degrees of freedom evolving in 
continuous time according to the law 

dxld t  = f (x)  x, f E RF. (8) 

f ( a  = 0,) = Dl. 
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We consider a record of the history of the system, obtained by identifying the state 
x(t )  of the system at regular time intervals of length 7 :  

X k  = X( k T )  k E E .  (9) 

(10) 

A history X ( N )  of the system is a finite subset of N consecutive x k :  

x ( N )  = 
k ( x k ,  x k + l ,  * . 9 x k + N - l )  

with X“’ E RFN. We can introduce a metric in the space of histories by considering, e.g., 

We can fix our attention on one history Xi” and on the I-ball Bl(Xo)  around it: 

B f ( X b ” ) )  ={X“’: d ( X ( N ’ - - X ~ “ ) ) s  I}. (12) 
A natural measure in the space of histories is introduced if the initial state x k  is 
distributed according to the invariant measure on the attractor. We can thus define 
the probability Pl(XbN’)  that a given history falls within the l-ball BI(Xb”) around 
Xi”’. Such a probability can be estimated (Grassberger and Procaccia 1983) if we 
know a great number K of histories X;” (or a very long record of consecutive states 
of the system, which is then broken up into histories of length N )  

If N is increased and I is reduced we expect P, (Xo)  to scale like 

Pl(Xb”) - eXp(-hTh’) (14) 
where p and A depend in general on Xi”. Our aim is to characterise the distribution 
of A (a sort of local expansion parameter) much in the same way as the distribution 
of a for the phase space has been characterised. 

It is convenient at this point to divide the space of histories into boxes. This can 
be done by partitioning the phase space into boxes of linear size 1. The ‘history’ boxes 
are then the Cartesian product (for 1 < j < N )  of the ‘phase space’ boxes. The time 
evolution of the system is thus given by a particular history box Z = ( i t ,  . . . , i N )  where 
i l ,  . . . , iN are the indices of the ‘phase space’ boxes visited at times ( t  + 7, t + 27, . . . , t + 
N T ) .  We can now introduce the probability P f ( Z )  that a history belongs to the history 
box I. This is of course analogous to p I (  i ) .  The moments rN,J q )  of PI( Z) are given by 

r N , f ( q )  = E  (Pf(I)),* (15) 

r d q )  --exp(-K,(q - 1)W. (16) 

I 

We expect therefore 

The exponents K,, heuristically defined in (16), are the Renyi entropies (Renyi 1970) 
and generalise the Kolmogorov entropy K1. Namely, one has 

One can show that K ,  s K,, if q > 4‘. The number N N  of boxes necessary to cover 
the set of histories in OXFN is given by 

(18) for N + 00. KN - exp( K07N)  
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We can thus identify KO with the topological entropy S. The Renyi entropies allow 
therefore for a characterisation of the intermittency of a chaotic signal (Paladin and 
Vulpiani 1986). 

The exponential decay of P l ( I )  (equation (14)) is related to the local divergence 
of nearby orbits, which takes place also if the motion is globally confined. We can 
thus introduce a local expansion parameter (LEP) A to measure the rate of divergence 
of an F-dimensional volume in tangent space: 

Pl(I)-eXp(-ATN) for large N. (19) 

We now consider the set a(A) of histories whose LEP belongs to the interval [A,  A +dA]. 
The number NA of boxes necessary to cover this set will increase with N according 
to the law 

NA - exp( rNh( A ) ) .  (20) 

We can consider h ( A )  as the topological entropy S(A) of the histories belonging to 
R(A), with the warning that if h ( A )  s 0, then S(A) = 0. We have by definition h ( A )  d KO.  

We now show that h ( A )  and K ,  are related to each other by a Legendre transforma- 
tion analogous to (7). 

When we consider the moments rN,l(q) in (15) we can group together all boxes 
with a given value of A and obtain, in analogy with (6), 

r~,dq) - I d d h )  exp(rNh(A)) exp(-.rNAq) 

where dp(A) is a smooth measure. 
Estimating this integral by the saddle-point method in the limit N + m  yields 

rN,dq) - expE-TNK,(q - 111 (21) 

with 

K, =- min[qA -h(A)]. 
( 4 - 1 )  

We see that e-” plays in (20) a role analogous to I in (6). Equation (22) is strictly 
analogous to (7) .  Of course A is bounded between the extrema 

Amin = Km A,,, = Km. (23) 

If h ( A )  is differentiable, a value h is picked up by (22) satisfying 

4=c 
dh I A =,i 

At q = 0, = K *, whereas h(A  ) attains its maximum value: 

h ( A  = K * )  = KO. (25) 
It is easy to show that h ( A )  is a convex function defined on the interval [K,, K-,I. 

Around its maximum, h ( A )  can be approximated by a parabola: 

h ( A ) =  Ko-(1/2p)(A - K * ) 2 .  (26) 

q&+i = qKi - f p q 2 .  (27) 

We have, for small enough q, 
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If the PI( I )  are distributed according to a log-normal law, (27) would remain true for 
all values of q 

where ( ) means average on the boxes I .  
Let us also remark that the relation between h ( A )  and K, is reminiscent of that 

linking the entropy to the free energy in thermodynamics. The role of temperature is 
played by the inverse moment index T = q- ' .  The 'free energy' K , ( q  - 1 )  is linear in 
T only when there is no intermittency (i.e. the LEP does not fluctuate). 

On the other hand, as T+O+ (i.e. as q+m)  the system is found in the state of 
minimal energy Ami,, and of minimal entropy h(Amin).  

One may also speculate on the possible existence of 'phase transitions' which would 
appear as edges in the K ,  against q curve (Coniglio 1986). We finally want to recall 
that the Renyi entropies can be extracted by a numerical calculation (Paladin and 
Vulpiani 1986) of 

where M is the number of records X',"' available and 

Let us note that we are using a Euclidean metric here which is not the sup metric of 
( 1  1 ) .  However in a finite-dimensional space all metrics are equivalent. Moreover it 
was shown (Paladin and Vulpiani 1986) that in many cases the Renyi entropies are 
related to the generalised Lyapounov exponents L'p'(q) (Benzi et a1 1985, Paladin 
and Vulpiani 1986): 

K,,, = L'P'( -q) / -q .  (30) 
Here p is the number of non-negative Lyapounov exponents y, of the systems and 
lim,+o L " ' ( q ) / q  =EL=, Y k  (with yk 3 yk+ , ) .  One then sees that (30) becomes the Pesin 
relation (Pesin 1976) K ,  = X;pk=l Yk in the limit of vanishing q. 

We have shown, in summary, that the Renyi entropies K ,  can be put in relations 
with the distribution of local expansion parameters A in the space of histories by a 
thermodynamic formalism quite close in spirit to that introduced to describe the 
multifractal structure of the attractors in phase space. 

After the completion of this paper we discovered that Eckmann and Procaccia 
(1986) obtained results similar to ours. 

We are grateful to M Mezard for illuminating suggestions and to A Crisanti for a 
useful remark. One of us (AV) thanks J P Eckmann for having made available the 
results of his work. 

References 

Badii R and Politi A 1984 Phys. Rev. Left. 52  1661 
Benzi R, Paladin G, Parisi G and Vulpiani A 1984 J. Phys. A: Math. Gen. 17 3521 
- 1985 J. Phys. A: Math. Gen. 18 2157 



Letter to the Editor 

Coniglio A 1986 Private communication 
Frisch U and Parisi G 1983 Turbulence and Predicfabilify of Geophysical Flows and Climate Dynamics ( Varenna 

Summer School LXXXVIII )  ed N Ghil, R Benzi and G Parisi (Amsterdam: North-Holland) p 84 
Eckmann J P and Procaccia I 1986 Phys. Reo. A 34 659 
Grassberger P 1983 Phys. Left. 91A 226 
Grassberger P and Procaccia I 1983 Phys. Rev. A 28 2591 
Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Schraiman B I 1986 Phys. Reo. A33 1141 
Jensen M H, Kadanoff L P, Liebchaber A, Procaccia I and Stavans K 1985 Phys. Reo. Lef t  55 2798 
Paladin G and Vulpiani A 1984 Left. Nuooo Cimenfo 41 82 
- 1986 J. Phys. A: Maih. Gen. 19 L997 
Pesin Ya B 1976 Dokl. Akad. Nauk 226 774 
Renyi A 1970 Probability Theory (Amsterdam: North-Holland) 


